skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Izquierdo, Walter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Alzheimer’s disease (AD) is a neurogenerative condition characterized by sharp cognitive decline with no confirmed effective treatment or cure. This makes it critically important to identify the symptoms of Alzheimer’s disease in its early stages before significant cognitive deterioration has taken hold and even before any brain morphology and neuropathology are noticeable. In this study, five different multimodal deep neural networks (MDNN), with different architectures, in search of an optimal model for predicting the cognitive test scores for the Mini-Mental State Examination (MMSE) and the modified Alzheimer’s Disease Assessment Scale (ADAS-CoG13) over a span of 60 months (5 years). The multimodal data utilized to train and test the proposed models were obtained from the Alzheimer’s Disease Neuroimaging Initiative study and includes cerebrospinal fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and metabolic measures from positron emission tomography (PET), and cognitive scores from the neuropsychological tests (Cog). The models developed herein delve into two main issues: (1) application merits of single-task vs. multitask for predicting future cognitive scores and (2) whether time-varying input data are better suited than specific timepoints for optimizing prediction results. This model yields a high of 90.27% (SD = 1.36) prediction accuracy (correlation) at 6 months after the initial visit to a lower 79.91% (SD = 8.84) prediction accuracy at 60 months. The analysis provided is comprehensive as it determines the predictions at all other timepoints and all MDNN models include converters in the CN and MCI groups (CNc, MCIc) and all the unstable groups in the CN and MCI groups (CNun and MCIun) that reverted to CN from MCI and to MCI from AD, so as not to bias the results. The results show that the best performance is achieved by a multimodal combined single-task long short-term memory (LSTM) regressor with an input sequence length of 2 data points (2 visits, 6 months apart) augmented with a pretrained Neural Network Estimator to fill in for the missing values. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    We propose a novel pipeline for the real-time detection of myocardial infarction from a single heartbeat of a 12-lead electrocardiograms. We do so by merging a real-time R-spike detection algorithm with a deep learning Long-Short Term Memory (LSTM) network-based classifier. A comparative assessment of the classification performance of the resulting system is performed and provided. The proposed algorithm achieves an inter-patient classification accuracy of 95.76% (with a 95% Confidence Interval (CI) of ±2.4%), a recall of 96.67% (±2.4% 95% CI), specificity of 93.64% (±5.7% 95% CI), and the average J-Score is 90.31% (±6.2% 95% CI). These state-of-the-art myocardial infarction detection metrics are extremely promising and could pave the wave for the early detection of myocardial infarctions. This high accuracy is achieved with a processing time of 40 milliseconds, which is most appropriate for online classification as the time between fast heartbeats is around 300 milliseconds. 
    more » « less
  4. null (Ed.)
  5. This paper introduces a new image smoothing filter based on a feed-forward convolutional neural network (CNN) in presence of impulse noise. This smoothing filter integrates a very deep architecture, a regularization method, and a batch normalization process. This fully integrated approach yields an effectively denoised and smoothed image yielding a high similarity measure with the original noise free image. Specific structural metrics are used to assess the denoising process and how effective was the removal of the impulse noise. This CNN model can also deal with other noise levels not seen during the training phase. The proposed CNN model is constructed through a 20-layer network using 400 images from the Berkeley Segmentation Dataset (BSD) in the training phase. Results are obtained using the standard testing set of 8 natural images not seen in the training phase. The merits of this proposed method are weighed in terms of high similarity measure and structural metrics that conform to the original image and compare favorably to the different results obtained using state-of-art denoising filters. 
    more » « less
  6. null (Ed.)
    This study introduces a new multimodal deep regression method to predict cognitive test score in a 5-year longitudinal study on Alzheimer’s disease (AD). The proposed model takes advantage of multimodal data that includes cerebrospinal fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and metabolic measures from positron emission tomography (PET), and cognitive scores from neuropsychological tests (Cog), all with the aim of achieving highly accurate predictions of future Mini-Mental State Examination (MMSE) test scores up to five years after baseline biomarker collection. A novel data augmentation technique is leveraged to increase the numbers of training samples without relying on synthetic data. With the proposed method, the best and most encompassing regressor is shown to achieve better than state-of-the-art correlations of 85.07%(SD=1.59) for 6 months in the future, 87.39% (SD =1.48) for 12 months, 84.78% (SD=2.66) for 18 months, 85.13% (SD=2.19) for 24 months, 81.15% (SD=5.48) for 30 months, 81.17% (SD=4.44) for 36 months, 79.25% (SD=5.85) for 42 months, 78.98% (SD=5.79) for 48 months, 78.93%(SD=5.76) for 54 months, and 74.96% (SD=7.54) for 60 months. 
    more » « less
  7. This study utilises a deep convolutional neural network (CNN) implementing regularisation and batch normalisation for the removal of mixed, random, impulse, and Gaussian noise of various levels from digital images. This deep CNN achieves minimal loss of detail and yet yields an optimal estimation of structural metrics when dealing with both known and unknown noise mixtures. Moreover, a comprehensive comparison of denoising filters through the use of different structural metrics is provided to highlight the merits of the proposed approach. Optimal denoising results were obtained by using a 20‐layer network with 40 × 40 patches trained on 400 180 × 180 images from the Berkeley segmentation data set (BSD) and tested on the BSD100 data set and an additional 12 images of general interest to the research community. The comparative results provide credence to the merits of the proposed filter and the comprehensive assessment of results highlights the novelty and performance of this CNN‐based approach. 
    more » « less